$\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 222.0,140.8,128.4,127.8,126.0,88.1,80.8,56.7$, $46.3,34.6,24.2,18.6$; IR (film) $2962,1739,1455,1083,1070 \mathrm{~cm}^{-1}$; MS (EI) $m / z 216.1139$ (216.1140 caled for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}, \mathrm{M}, 70$), 131 (100), 85 (75).

The (p-toluenesulfonyl)hydrazone 41 (73% yield) provided X-rayquality crystals from hexane-EtOAc: mp $168-169{ }^{\circ} \mathrm{C}$; MS (EI) m / z 384.1571 (384.1507 calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{20} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 65.59 ; \mathrm{H}, 6.30 ; \mathrm{N}, 7.29$. Found: C, $65.46 ; \mathrm{H}, 6.38$; N, 7.24.

Preparation of ($2 R^{*}, 3 a S^{*}, 6 a R^{*}$)- and ($2 R^{*}, 3 a R^{*}, 6 a S^{*}$)-Hexa-hydro-2,3a-diphenyl-4H-cyclopenta[b]furan-4-ones (42 and 43). Following the general procedure described for the preparation of 39 b , a solution of diol 21c ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$), benzaldehyde ($11 \mu \mathrm{~L}, 0.10$ mmol), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$ was maintained at $-23^{\circ} \mathrm{C}$ for 1 h to provide, after aqueous workup and chromatography ($3: 2$ hexane-EtOAc), $13 \mathrm{mg}(90 \%)$ of a $2: 1$ mixture of 42 and 43 , respectively. Separation of this mixture was achieved by preparative HPLC (Supelcosil, $25 \mathrm{~cm} \times 10 \mathrm{~mm}, 5-\mu \mathrm{m}$ particle size column ($9: 1$ hexane-THF). Data for 43: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.37$ (m, $10 \mathrm{H}, \mathrm{Ph}$), 5.13 $(\mathrm{d}, J=3.8 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{a})), 4.95$ (dd, $J=6.4,9.6 \mathrm{~Hz}, \mathrm{H}(2)), 3.19$ (dd, J $=6.4,12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(3)), 2.18-2.55(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 219.4,140.6,137.9,128.9,128.5,127.8,127.3,126.7,126.2$, $87.0,81.1,65.5,48.0,34.4,24.3$; IR (film) $2925,1750,1050,693 \mathrm{~cm}^{-1}$;

MS (EI) $m / z 278.1293$ (278.1307 calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$). Data for 42: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.35(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 5.04(\mathrm{t}, J=8.0$ $\mathrm{Hz}, \mathrm{H}(2)), 4.98(\mathrm{~d}, J=3.8 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{a})), 2.64-2.85(\mathrm{~m}, 3 \mathrm{H}), 2.42-2.55$ (m, 2 H), 2.25-2.35 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 219.4,2.85$ (m, 3 H), 2.42-2.55 (m, 2 H), 2.25-2.35 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 219.4,128.9,128.5,127.6,127.6,127.4,126.5,125.4,86.0$, $80.7,66.0,47.5,35.3,26.5$; IR (film) $3025,2925,1750,1050,694 \mathrm{~cm}^{-1}$; MS (EI) $m / z 278.1293$ (278.1307 calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}, \mathrm{M}, 19$).

Acknowledgment. The support of this research by PHS Grant NS-12389 is gratefully acknowledged. P.M. was supported by the National Engineering and Research Council of Canada. We particularly thank Dr. J. Ziller, Director, Irvine X-Ray Laboratory, for the single-crystal X-ray analyses. NMR, mass spectra, and X-ray analyses were performed with use of instrumentation supported in part by NSF Shared Instrumentation Grants.

Supplementary Material Available: Experimental procedures and characterization data for compounds $9,10 a, b, 12,16,17,19$, 21a,c, 22a,c, 23c, 25b-e, 26c-e, 27a,b, 28a-c, 31a,b, 34a-c,f, 37a-c, 39a,b,e-h (20 pages). Ordering information is given on any current masthead page.

General Approach to Halogenated Tetrahydrofuran Natural Products from Red Algae of the Genus Laurencia. Total Synthesis of (\pm)-trans-Kumausyne and Demonstration of an Asymmetric Synthesis Strategy

Mark J. Brown, Timothy Harrison, and Larry E. Overman*
Contribution from the Department of Chemistry, University of California, Irvine, California 92717. Received November 30, 1990

Abstract

A general strategy for the synthesis of C_{15} halogenated tetrahydrofuranoid lipids from red algae of the genus Laurencia has been developed. The central step is the convenient formation of hydrobenzofuranone (\pm)-5 on a large scale, and with complete stereocontrol, from the acid-catalyzed condensation of 1 -vinylcyclopentanediol (3) and α-(benzyloxy)acetaldehyde (Scheme II). Starting with the chiral, nonracemic ($1 S, 2 R$)-diol 3, hydrobenzofuranone (-)-5 is also available in good enantiomeric purity (Scheme V). The total synthesis of (\pm)-trans-kumausyne from rac- $\mathbf{5}$ is accomplished in 13 steps and $>5 \%$ overall yield.

A rich variety of halogenated, nonisoprenoid sesquiterpenes have been isolated from the widely distributed red algae of the genus Laurencia. ${ }^{1}$ The majority of these metabolites can be envisaged to arise from the halocyclization of various 6,7 -dihydroxy-pentadeca-3,9,12-trien-1-ynes (laurediols). ${ }^{2}$ A large number of these Laurencia lipids contain at least one tetrahydrofuran ring. In many of these, the oxygen of the tetrahydrofuran ring is flanked by cis side chains which are also cis related to an oxygen substituent at $\mathrm{C}(3)$. A representative selection of metabolites of this common type is shown in Figure 1. ${ }^{3-7}$ Also depicted in Figure 1 is a proposed approach for the assembly of members of this class

[^0]
Scheme I

of marine natural products from a common bicyclic lactone aldehyde precursor 2. This intermediate embodies the three stereogenic centers of the central tetrahydrofuran ring and also provides loci for the elaboration of the remaining six carbons of these halogenated lipid targets.

A central feature of this potentially widely applicable synthesis plan is the ready assembly of cis-hydrobenzofuranones of general structure $\mathbf{4}$ by ring enlarging tetrahydrofuran annulations of cy-

trans-kumausyne (1)

Figure 1. Representative Laurencia nonisoprenoid sesquiterpenes. ${ }^{3-7}$
clopentanediol precursor 3 (Scheme I). ${ }^{8}$ As depicted in Scheme I, two ostensibly straightforward oxidations would be required to transform 4 to the pivotal bicyclic lactone aldehyde intermediate 2.

The preceding papers in this series ${ }^{8,9}$ reported the development of a new stereocontrolled synthesis of tetrahydrofurans from allylic diol and carbonyl components, of which the conversion depicted in Scheme I is one example. In this paper we illustrate the use of this new method of oxacyclic ring construction as the centerpiece of the first total synthesis of a member of the marine natural products group depicted in Figure 1. Specifically, we report a concise, highly stereocontrolled synthesis of trans-kumausyne, the simplest member of this group. ${ }^{10,11}$ This halogenated Laurencia lipid was first isolated and characterized by Kurosawa and coworkers in $1983 .{ }^{3}$ trans-Kumausyne, together with its deacetyl derivative, are the most abundant terpenoids found in methanolic extracts of Laurencia nipponica Yamada, a red algae indigenous to waters off the coast of Hokkaido, Japan.
Total Synthesis of (\pm)-trans-Kumausyne. Our efforts began with the cis-hydrobenzofuranone 5 , which is available with complete stereoselectivity on a large scale from the reaction of ($1 R^{*}, 2 S^{*}$)-1-vinylcyclopentane-1,2-diol (3) and α-(benzyloxy)acetaldehyde (Scheme II). ${ }^{8} \quad$ Oxidation of 5 with m-chloroperoxybenzoic acid provided a $4: 1$ mixture of regioisomeric lactones 6 and 7, which were readily separated on silica gel to provide

[^1]

Scheme II ${ }^{\text {a }}$

lactone 6 (58\%) and its crystalline isomer 7 (14\%). The regioselectivity of this transformation was no better with other

Scheme III ${ }^{\text {e }}$

${ }^{a}$ TBS $=t-\mathrm{BuMe}_{2} \mathrm{Si}$.
Scheme IV

Baeyer-Villiger oxidants: $\mathrm{HO}_{2} \mathrm{H}-\mathrm{HOAc}, \mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H}$, and p nitroperoxybenzoic acid. ${ }^{12,13}$ Debenzylation of lactone ether 6 provided the crystalline alcohol 8 in 88% yield.

Oxidation of 8 under Swern ${ }^{14}$ conditions followed by a nonaqueous workup ${ }^{15}$ provided aldehyde 9 in essentially quantitative yield. This sensitive aldehyde decomposed when stored at room temperature and was immediately employed to develop the sixcarbon side chain.

The trans-3-hexenyl side chain was elaborated by Sakurai reaction ${ }^{16}$ of aldehyde 9 with 3-(trimethylsilyl)-1-pentene (10). Employing the general procedures of Rathke ${ }^{17}$ and Zweifel, ${ }^{18}$ this allylsilane was accessed from 1-pentyne by the one-pot sequence of transformations summarized in eq 1. Reaction of lactone

[^2]aldehyde 9 with 3-(trimethylsilyl)-1-pentene in the presence of $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ afforded a single, crystalline alcohol product 11 in 73% yield. The stereochemistry at the newly developed stereocenter of 11 was initially assigned on the expectation that the monodentate Lewis acid BF_{3} would promote simple Cram stereoselection. ${ }^{19}$ The stereochemistry at this center was subsequently confirmed by chemical correlation of 11 with a related intermediate which had yielded to X-ray crystallographic analysis. ${ }^{20}$ Conventional silylation of 11 provided the silyl ether $12 .{ }^{21}$
With the six-carbon side chain of kumausyne in place, manipulation of the lactone function to elaborate the five-carbon side chain was required. Accordingly, 12 was treated with 1.5 equiv of $i-\mathrm{Bu}_{2} \mathrm{AlH}$ at $-78^{\circ} \mathrm{C}$ in toluene to provide the sensitive hydroxy aldehyde 13 (Scheme III). High-field ${ }^{1} \mathrm{H}$ NMR analysis indicated that this intermediate existed in CDCl_{3} exclusively ($>95 \%$) in the open aldehyde form. After considerable experimentation, an efficient sequence was developed for converting 13 to the silylprotected enal 15. Dropwise addition of 13 to a solution containing 5 equiv of $\mathrm{Me}_{3} \mathrm{SiOTf}$ and 5 equiv of i - $\mathrm{Pr}_{2} \mathrm{EtN}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}\right)$ resulted in silylation of both the secondary hydroxyl and aldehyde functions, providing 14 as a ca. 3:1 mixture of geometrical isomers. Oxidation of the enoxysilane functionality of 14 with 1.5 equiv of $\mathrm{Pd}(\mathrm{OAc})_{2}$ under Saegusa-Ito ${ }^{22}$ conditions, followed by purification of the crude product on silica gel, afforded the desired (E)-enal 15 in 53% overall yield from 13.
One-carbon homologation of the unsaturated aldehyde to the trans-enyne 17 was best accomplished by the general method of Normant. ${ }^{23}$ Thus, treatment of 15 with the Horner-Emmons

[^3]
Scheme V

reagent generated from diethyl trichloromethanephosphonate provided the dichloro diene 16 in 88% yield. Exposure of 16 to $n-\mathrm{BuLi}$ followed by a protic quench afforded the enyne 17 with 98% efficiency. Selective cleavage of the trimethylsilyl ether, followed by conventional acylation, provided 18 in 92% overall yield from 17.

With all the carbon atoms of trans-kumausyne in place, the stage was set to address the crucial bromination step. Desilylation of 18 was effected in quantitative yield by treatment with HF. pyridine in $\mathrm{CH}_{3} \mathrm{CN}$ (Scheme IV). Under these conditions no cleavage of the acetate was observed. Extensive model studies had demonstrated that bromination of alcohol 19 would not be trivial. These studies had also targeted the triphenylphosphinecarbon tetrabromide reagent system as being most suitable for this challenging functional group interconversion. ${ }^{24}$ In the event, treatment of alcohol 19 with 5 equiv of $\mathrm{Ph}_{3} \mathrm{P}$ and 5 equiv of freshly sublimed CBr_{4} in the presence of 2.5 equiv of 2,6 -di-tert-butylpyridine ($\mathrm{PhH}, 40^{\circ} \mathrm{C}, 1 \mathrm{~h}$) provided (\pm)-trans-kumausyne (1) in 40% yield after purification on silica gel. In addition to $1, \mathrm{ca}$. 15% of the diene 20 was isolated. A comparison of the NMR and IR characteristics of synthetic 1 with spectra of natural trans-kumausyne ${ }^{25}$ confirmed the identity of the synthetic product.

Demonstration of an Asymmetric Route for the Synthesis of Laurencia Metabolites. The preparation of hydrobenzofuranone 5 in chiral, nonracemic form should enable asymmetric synthesis of trans-kumausyne and related Laurencia metabolites. ${ }^{26}$ The ($1 S, 2 R$)-diol precursor 3 of this key bicyclic intermediate was readily assembled as outlined in Scheme V. Employing the method of Fujisawa, ${ }^{27}$ the keto enamine 21 was prepared from 1,2-cyclopentanedione ${ }^{28}$ and (S)- O-methylprolinol. ${ }^{29}$ Slow addition of vinylmagnesium bromide at $-78^{\circ} \mathrm{C}$ to a $\mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}(1: 9)$ solution of 21 followed by hydrolytic workup provided ($2 S$)-22. ${ }^{27}$ Stereoselective reduction ${ }^{8}$ of this intermediate with $\mathrm{NaBH}(\mathrm{OAc})_{3}{ }^{30}$

[^4]provided the ($1 S, 2 R$)-diol $3,[\alpha]_{\mathrm{D}}-58.4^{\circ}$, in 53% overall yield from 21. The enantiomeric purity of this intermediate (84% ee) was determined by ${ }^{1} \mathrm{H}$ NMR analysis after esterification with (R)-methylmandelic acid. ${ }^{3}$ The degree of face selectivity in the reaction of 21 with vinylmagnesium bromide was quite sensitive to the reaction solvent. For example, use of THF alone yielded ($2 S$)- $\mathbf{2 2}$ in only 33% enantiomeric excess. The choice of a 9:1 mixture of $\mathrm{Et}_{2} \mathrm{O}$-THF as the reaction medium was arrived at as the minimum amount of THF necessary to dissolve vinylmagnesium bromide at $-78^{\circ} \mathrm{C}$.

Acid-promoted reaction of ($1 S, 2 R$)-3 with α-(benzyloxy)acetaldehyde at room temperature, as described in the racemic series, ${ }^{8}$ provided (-) -5 in 57% yield. Debenzylation of (-) -5 followed by analysis of the alcohol product as its (R)-methylmandelate ester confirmed that there had been no measurable loss of enantiomeric purity in the conversion of $(1 S, 2 R)-3$ to $(-)-5$.

The preparation of hydrobenzofuranone (-)-5 in useful enantiomeric purity defines a convenient asymmetric approach for the synthesis of trans-kumausyne and related metabolites (Figure 1). It does not strictly constitute a formal total synthesis of (+)-kumausyne, since only racemic 5 has been converted on to the natural metabolite. ${ }^{26}$ As a result of the low reported rotation of transkumausyne and the fact that its absolute configuration rests on rigorous degradative correlations, ${ }^{3}$ we did not deem it worthwhile in the present context to convert (-)-5 to optically active transkumausyne.

Conclusion

The first total synthesis of a C_{15} tetrahydrofuranoid lipid of the Laurencia genus, specifically (\pm)-trans-kumausyne, has been accomplished. The hydrobenzofuranone 5 , which is available on a large scale by the "ring-enlarging tetrahydrofuran annulation" chemistry recently developed in these laboratories, ${ }^{8}$ is the key intermediate in the synthesis sequence. The bicyclic lactone aldehyde 2, readily obtainable from 5 , is potentially a general intermediate for preparing a wide variety of Laurencia C_{15} lipid metabolites as suggested in Figure 1.

This completely stereocontrolled total synthesis of ($\mathbf{\pm}$)-transkumausyne proceeded in 13 steps and 5.4% overall yield from hydrobenzofuranone 5. This latter intermediate is available in racemic form in three steps and 40% overall yield from commercially available starting materials. Hydrobenzofuranone 5 is also obtainable in useful enantiomeric purity (ca. 85% ee) by a convenient four-step asymmetric synthesis. We anticipate that the new strategy for stereocontrolled assembly of tetrahydrofurans, which was developed as a prelude to this total synthesis, ${ }^{8.9}$ will find other applications in the arena of complex tetrahydrofuranoid synthesis.

Experimental Section ${ }^{32}$

(3a $\left.R^{*}, 8 a R\right)-2\left(R^{*}\right)-[($ Benzyloxy)methyll-5-oxotetrahydrofuro $3,2-$ bloxepane (6) and ($\left.3 \mathrm{a} R^{*}, 8 \mathrm{a} R^{*}\right)-2\left(R^{*}\right)-[($ Benzyloxy $)$ methyll $-4-\mathrm{oxo}$ tetrahydrofuro $3,2-c$ loxepane (7). To a stirring solution of hydrobenzofuranone $5(5.47 \mathrm{~g}, 21.0 \mathrm{mmol})^{8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added m-chloroperoxybenzoic acid ($85 \%, 13.6 \mathrm{~g}, 67.3 \mathrm{mmol}$). The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 72 h and then was poured carefully into a cooled ($0^{\circ} \mathrm{C}$) solution of $\mathrm{Me}_{2} \mathrm{~S}(12 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$. Saturated NaHCO_{3} (200 mL) was added, the organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to leave a pale yellow oil. Purification by flash chromatography (hexanes-EtOAc 1:1) gave $3.38 \mathrm{~g}(58 \%)$ of 6 as a clear oil and $0.83 \mathrm{~g}(14 \%)$ of 7 as a white solid, $\mathrm{mp} 91-92^{\circ} \mathrm{C}$.

Spectral data for 6: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.38$ (m, Ph), 4.88 (apparent quintet, $\mathrm{H}(3 \mathrm{a})$), $4.58(\mathrm{AB} \mathrm{q}, J=12.1 \mathrm{~Hz}, \Delta \nu=39.6$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.06 (dddd, $J=4.2,4.2,6.9,8.6 \mathrm{~Hz}, \mathrm{H}(2)$), 3.93 (apparent quintet, $H(8 \mathrm{a})$), $3.60(\mathrm{dd}, J=6.9 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, \mathrm{CHHOBn}$), 3.55 (dd, $J=4.2 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, \mathrm{CH} H \mathrm{OBn}), 2.56-2.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(6)), 2.46$ (ddd, $J=6.8,7.6,14.2 \mathrm{~Hz}, \mathrm{H}(3 \beta)), 2.16-2.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(8)$), 1.96 (ddd, J
(30) (a) Gribble, G. W.; Ferguson, D. C. J. Chem. Soc., Chem. Commun. 1975, 535. (b) Saksena, A. K.; Mangiaracina, P. Tetrahedron Lett. 1983, 24, 273. (c) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, $110,3560$.
(31) Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 22, 4929.
(32) General experimental details may be found in refs 8 and 9.
$=3.6,8.7,13.9 \mathrm{~Hz}, \mathrm{H}(3 \alpha)), 1.89-1.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(7)), 1.68-1.73(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C}(7) ; 1 \mathrm{H}, \mathrm{C}(8))$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.17-7.39(\mathrm{~m}, \mathrm{Ph})$, $4.45\left(\mathrm{AB} \mathrm{q}, J=12.1 \mathrm{~Hz}, \Delta \nu=16.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 3.97 (apparent quintet, $\mathrm{H}(3 \mathrm{a})), 3.88-3.94(\mathrm{~m}, \mathrm{H}(2)), 3.62$ (dd, $J=4.9,11.1 \mathrm{~Hz}, \mathrm{CHHOBn}$), 3.48 (dd, $J=5.0,9.9 \mathrm{~Hz}, \mathrm{CH} H \mathrm{OBn}$), 3.26 (ddd, $J=4.9,4.9,11.1 \mathrm{~Hz}$ $\mathrm{H}(8 \mathrm{a})), 2.24$ (apparent dd, $J=8.9,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6)), 1.83-2.02$ (m, $1 \mathrm{H}, \mathrm{C}(7)$), $0.93-1.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(7)) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8$ (s), 137.9 (s), 128.3 (d), 127.8 (d), 127.6 (d), 80.4 (d), 79.8 (d), 77.1 (d), 73.4 (t), 72.1 (t), 35.8 (t), 31.5 (t), 26.5 (t), 16.7 (t$)$; IR (CCl_{4}) $2956,2875,2863,1751,1459,1266,1235,1156,1098,1082 \mathrm{~cm}^{-1}$; MS (CI) $m / z 277$ (MH), 187, 169, 91; HRMS (EI) $m / z 276.1358$ (276.1361 caled for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$).

Spectral data for 7: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.35$ (m, $\mathrm{Ph}), 4.59\left(\mathrm{AB} \mathrm{q}, J=12.1 \mathrm{~Hz}, \Delta \nu=51.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.29(\mathrm{app} \mathrm{dd}, J$ $=7.6,12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6)), 4.19$ (ddd, $J=7.6,7.6,12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6))$ 4.09 (ddd, $J=3.0,9.2,12.0 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{a})$), $3.99-4.04$ (m, H(2)), 3.56-3.62 ($\mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}$), 3.45 (apparent quintet, $J=8.8 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{a})$), $2.18-3.00$ (m, 2 H), 2.05-2.15 (m, 2 H), 1.64-1.72 (m, 1 H), I.52-1.60 (m, 1 H); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.33-7.54(\mathrm{~m}, \mathrm{Ph}), 4.61,(\mathrm{AB} \mathrm{q}, J=12.1$ $\left.\mathrm{Hz}, \Delta y=25.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.01-4.06(\mathrm{~m}, \mathrm{H}(2)), 3.80(\mathrm{dd}, J=6.4,10.1$ $\mathrm{Hz}, \mathrm{CHHOBn}$), 3.74 (dd, $J=7.3,12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (dd, $J=4.3,10.1$ $\mathrm{Hz}, \mathrm{CH} H \mathrm{OBn}$), 3.55 (ddd, $J=3.5,8.5,12.0 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{a})$), 3.47 (ddd, J $=4.7,12.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.74(\mathrm{~m}, 2 \mathrm{H}), 1.97-2.05(\mathrm{~m}, 2 \mathrm{H})$, 1.49-1.72 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3$ (s), 137.9 (s), 128.3 (d), 127.8 (d), 127.6 (d), 77.9 (d), 76.6 (d), 73.5 (t), 72.0 (t), 64.9 (t), 46.4 (d), 31.1 (q), 27.1 (t), 22.6 (t); IR ($\left.\mathrm{CCl}_{4}\right) 2952,2881,2861$, 1751, 1454, 1357, 1278, 1179, 1157, 1147, 1098, $1091 \mathrm{~cm}^{-1}$; MS (CI) $m / z 277$ (MH), 187, 169; MS (EI) $m / z 276.1353$ (276.1364 calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$: $\mathrm{C}, 69.55 ; \mathrm{H}, 7.29$. Found: C, 69.44; H, 7.33
(3aR*,8aR*)-2(\boldsymbol{R}^{*})-(Hydroxymethyl)-5-oxotetrahydrofuro $\left.3,2-b\right]$ oxepane (8). A mixture of $6(3.15 \mathrm{~g}, 11.4 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.39$ g) in EtOAc (70 mL) was stirred under a hydrogen atmosphere for 6 h . After filtration through a pad of Celite, the solvent was removed in vacuo and the residue purified by flash chromatography ($20: 1 \mathrm{EtOAc}-\mathrm{EtOH}$) to give $8(1.87 \mathrm{~g}, 88 \%)$ as a white crystalline solid.

An analytical sample was obtained by washing this solid with $5: 1$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and drying in vacuo (0.1 mm) over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 24 h : mp $49-51^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.90$ (ddd, $J=3.6,4.5,7.9$ $\mathrm{Hz}, \mathrm{H}(3 \mathrm{a})$), $3.90-4.03(\mathrm{~m}, \mathrm{H}(8 \mathrm{a})$ and $\mathrm{H}(2)), 3.74$ (ddd, $J=3.4,6.3$, $11.8 \mathrm{~Hz}, \mathrm{C} H \mathrm{HOH}$), 3.63 (apparent quintet, $\mathrm{CH} H O H$), 2.53-2.67 (m, 2 H), 2.43 (apparent quintet, 1 H), 2.33 (apparent $\mathrm{t}, J=5.8 \mathrm{~Hz}, \mathrm{OH}$), 2.11-2.18 (m, 1 H), 1.87-2.06 (m, 2 H), 1.63-1.74 (m, 2 H). Addition of $\mathrm{D}_{2} \mathrm{O}$ results in loss of the apparent t at $\delta 2.33$, collapse of the ddd at $\delta 3.74$ to a dd $(J=3.3,11.8 \mathrm{~Hz})$, and collapse of the apparent quintet at $\delta 3.63$ to a dd $(J=6.3,11.8 \mathrm{~Hz}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $172.8,80.3,80.0,78.5,64.2,34.5,31.4,26.5,16.6$; $\mathrm{IR}\left(\mathrm{CCl}_{4}\right) 3430,2947$, $2877,1736,1461,1351,1293,1270,1241,1158,1074 \mathrm{~cm}^{-1} ;$ MS (CI) $m / z 187$ (MH), 169. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 58.05 ; \mathrm{H}, 7.58$. Found: C, 58.11; H, 7.58.

3-(Trimethylsilyl)-1-pentene (10). Following the general procedure of Brown, ${ }^{33}$ to a solution of borane-methyl sulfide $(8.07 \mathrm{~mL}$ of a 10 M solution in methyl sulfide, 80.7 mmol) in THF (40 mL) at $-10^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right.$, ice) was added dropwise a solution of 2-methyl-2-butene (80.7 mL of a 2 M solution in THF, 0.161 mmol). The reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ over a period of 2 h and then was cooled to $0^{\circ} \mathrm{C}$, and 1 -pentyne ($5 \mathrm{~g}, 73.5 \mathrm{mmol}$) was added dropwise. After 30 min , the ice bath was removed, and the reaction mixture was allowed to stand for 30 min

Following the general procedure of Rathke, ${ }^{17}$ a solution of $n-\mathrm{BuLi}$ (32.3 mL of a 2.5 M solution, 80.7 mmol) was cooled to $0^{\circ} \mathrm{C}$, and 2,2,6,6-tetramethylpiperidine ($13.6 \mathrm{~mL}, 80.7 \mathrm{mmol}$) was added dropwise. The resulting mixture was allowed to reach $23^{\circ} \mathrm{C}$, and the volatiles were removed in vacuo (approximately 13 mm). The residue was cooled to $0^{\circ} \mathrm{C}$, and the above solution of disiamyl-1-pentenylborane was added via cannula, giving rise to an orange solution upon mixing and warming to $23^{\circ} \mathrm{C}$. The mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{Me}_{2} \mathrm{SiCl}(15.4 \mathrm{~mL}, 0.122 \mathrm{~mol})$ was added, and the mixture was stirred at this temperature for 30 min . According to the general procedure of Zweifel, ${ }^{18}$ glacial AcOH (20 mL) was added and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ for 2 h . After being cooled to $23^{\circ} \mathrm{C}$, this solution was added to $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(44 \mathrm{~mL})$ in $3 \mathrm{M} \mathrm{NaOAc}(200 \mathrm{~mL})$, which exotherms mildly. This mixture was allowed to stand for 30 min and then was extracted with pentane ($3 \times$ 100 mL). The combined organic extracts were washed with $1 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ (100 mL) and brine (100 mL) and concentrated by distillation ($70^{\circ} \mathrm{C}$, 760 mm initialiy, and then $40^{\circ} \mathrm{C}, 50 \mathrm{~mm}$). The residue was dissolved in pentane and filtered, first through silica gel and then through alumina

(33) Brown, H. C.; Mandal, A. K.; Kulkarni, S. U. J. Org. Chem. 1977,

 42, 1392.After concentration, the residue was distilled ($54-58^{\circ} \mathrm{C}, 45 \mathrm{~mm}$) to give $2.94 \mathrm{~g}(28 \%)$ of 10 as clear colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.61$ (ddd, $\left.J=9.1,10.3,17.2 \mathrm{~Hz}, H \mathrm{C}=\mathrm{CH}_{2}\right), 4.89(\mathrm{dd}, J=2.1,10.3$ $\mathrm{Hz}, \mathrm{HC}=\mathrm{CH} \mathrm{H}$), 4.83 (ddd, $J=0.8,2.1,10.3 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH} H$), 1.53-1.57 (m, CHSiMe ${ }_{3}$), 1.34-1.40 (m, CH_{2}), $0.92(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, CH_{3}), -0.019 (s, $9 \mathrm{H}, \mathrm{SiMe}_{3}$); IR (film) 3078, 2959, 2931, 2901, 2873, 1627, 1453, 1249, 1134, $1066 \mathrm{~cm}^{-1}$
(3a $\left.R^{*}, 8 \mathrm{a} R^{*}\right)$-2($\left.R^{*}\right)$-(1 ($\left.S^{*}\right)$-Hydroxy-3(E)-hexenyl-5-oxotetrahydrofuro[$3,2-b$ joxepane (11). To a solution of oxalyl chloride (0.188 $\mathrm{mL}, 2.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise over $3 \mathrm{~min} \mathrm{Me}_{2} \mathrm{SO}(0.182 \mathrm{~mL}, 2.56 \mathrm{mmol})$. The reaction mixture was maintained at $-78{ }^{\circ} \mathrm{C}$ for 20 min , and then a solution of the alcohol 8 ($0.2 \mathrm{~g}, 1.08 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise over 5 \min. Stirring was continued at $-78^{\circ} \mathrm{C}$ for 1 h , then $\mathrm{Et}_{3} \mathrm{~N}(0.6 \mathrm{~mL}, 4.30$ mmol) was added, and the reaction mixture was allowed to warm to 23 ${ }^{\circ} \mathrm{C}$ during 30 min . The reaction mixture was diluted with a mixture of EtOAc and acetone ($2: 1,5 \mathrm{~mL}$) and filtered through a plug of silica gel with EtOAc-acetone ($2: 1$) as eluant. Concentration of the filtrate followed by flash chromatography on silica gel using EtOAc-acetone (4:1 and then $1: 1)$ as eluant gave $9(0.197 \mathrm{~g}, 100 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.70(\mathrm{~d}, J=1 \mathrm{~Hz}, \mathrm{HC}=0), 4.89$ (apparent $\mathrm{t}, J=1 \mathrm{~Hz}, \mathrm{H}(2), 4.29-4.36(\mathrm{~m}), 4.17-4.23(\mathrm{~m})$; IR (film) $1739 \mathrm{~cm}^{-1}$; MS (CI) $m / z 185$ (MH)

To a solution of aldehyde $9(0.197 \mathrm{~g}, 1.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise over $3 \mathrm{~min} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.197 \mathrm{~mL}, 1.61$ $\mathrm{mmol})$. A solution of allylsilane $10(228 \mathrm{mg}, 1.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added dropwise over 3 min , and the clear, colorless solution was allowed to warm to $23^{\circ} \mathrm{C}$ during 1 h . The reaction mixture was quenched by the addition of brine (10 mL), the organic phase was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine ($1 \times 10 \mathrm{~mL}$), then dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Purification of the residue by flash chromatography using EtOAc-hexane (1:1) as eluant gave 11 ($200 \mathrm{mg}, 73 \%$) as a white solid.

An analytical sample was obtained by recrystallization from 2:1 hexane-EtOAc: mp $121-122{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.59$ (ddd, $J=6.3,6.3,15.4 \mathrm{~Hz}, H \mathrm{C}=\mathrm{CH}$), $5.37-5.44(\mathrm{~m}, \mathrm{HC}=\mathrm{CH}), 4.90$ (apparent quintet, $\mathrm{C}(3 \mathrm{a})$), $3.89-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.81(\mathrm{~m}, 2 \mathrm{H})$, 2.56-2.66 (m, 2 H), 2.37-2.42 (ddd, $J=7.8,6.4,14.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.12-2.27 (m, 4 H), 2.00-2.06 (m, 3 H), 1.90-1.96 (m, 1 H), 1.67-1.74 (m, 2 H), $\left.0.97\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125MHz,CDCl}_{3}\right) \delta$ $172.8,136.1,124.0,80.3,80.1,80.0,70.9,36.5,33.2,31.5,26.3,25.6$, 16.7, 13.7; IR $\left(\mathrm{CHCl}_{3}\right) 3581,1737,1075 \mathrm{~cm}^{-1}$; MS (CI) $m / z 255$ (MH), 237, 219. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}: \mathrm{C}, 66.12 ; \mathrm{H}, 8.72$. Found: C, 66.04; H, 8.77
$\left(3 \mathrm{a} R^{*}, 8 \mathrm{a} R^{*}\right)-2\left(R^{*}\right)-\left[1\left(S^{*}\right)-[[D i m e t h y l(1,1-d i m e t h y l e t h y l)\right.$ silyl $]$ oxy]-3(E)-hexenyl]-5-oxotetrahydrofuro[3,2-b]oxepane (12). To a stir ring solution of $11(400 \mathrm{mg}, 1.57 \mathrm{mmol})$ and $2,6-$ lutidine ($0.731 \mathrm{~mL}, 6.28$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise over 3 min TBSOTf ($0.721 \mathrm{~mL}, 3.14 \mathrm{mmol}$). After being stirred at $0^{\circ} \mathrm{C}$ for 1 h the reaction mixture was diluted with a mixture of hexanes (40 mL) and ether (10 mL), washed with $1 \mathrm{M} \mathrm{HCl}(1 \times 10 \mathrm{~mL})$ and saturated NaHCO_{3} solution ($1 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Purification of the residue by flash chromatography ($20: 1$ to $1: 1$ hexanes-EtOAc) gave 12 ($524 \mathrm{mg}, 90 \%$) as a viscous, colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.50$ (ddd, $J=6.1,6.1,15.3 \mathrm{~Hz}, H \mathrm{C}=\mathrm{CH}$), 5.40 (ddd, $J=7.0,7.0,15.3 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}$), 4.87 (ddd, $J=4.9,4.9,8.3$ $\mathrm{Hz}, \mathrm{H}(3 \mathrm{a})), 3.83-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.68$ (ddd, $J=4.6,5.9,9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.54-2.64$ (m, 2 H), 2.34 (ddd, $J=5.9,8.0,13.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15-2.20 (m, 3 H), 2.05-2.14 (m, 1 H$), 1.97-2.04$ (m, 2 H$), 1.87-1.95(\mathrm{~m}, 1 \mathrm{H})$, $1.67-1.76(\mathrm{~m}, 2 \mathrm{H}), 0.97\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.07\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right), 0.06\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0$, $134.8,124.6,80.3,80.2,79.7,72.5,38.1,33.8,31.7,26.0,25.9,25.6,18.1$, 17.1, 13.6, -4.3, -4.4; IR $\left(\mathrm{CCl}_{4}\right) 2960,2931,2857,1754,1461,1264$, $1252,1235,1154,1078 \mathrm{~cm}^{-1}$; MS (CI) $m / z 369$ (MH), 237; MS (EI) $m / z 311.1696\left(13 \%, 311.1678\right.$ caled for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}$, loss of $\left.t-\mathrm{Bu}\right), 219$ (15\%), 213 (24\%), 199 (21\%), 187 (14\%), 167 (95\%).
(2R*,3R*,5R*)-5-[1(S*)-[[Dimethyl(1,1-dimethylethyI)sllyl]oxy]-3(E)-hexenyl)-2-(4-oxobutyl)-3-hydroxytetrahydrofuran (13). To a solution of $12(520 \mathrm{mg}, 1.41 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise over $5 \mathrm{~min} i-\mathrm{Bu}_{2} \mathrm{AlH}(0.377 \mathrm{~mL}, 2.12 \mathrm{mmol})$. The reaction mixture was maintained at $-78^{\circ} \mathrm{C}$ for 1.5 h and then quenched at -78 ${ }^{\circ} \mathrm{C}$ by the addition of $\mathrm{MeOH}(2 \mathrm{~mL})$ followed by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL). The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine $(1 \times 15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to leave 13 ($508 \mathrm{mg}, 97 \%$) as a colorless oil, which was used without further purification: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) \delta 9.76$ $(\mathrm{t}, J=1.7 \mathrm{~Hz}, \mathrm{CHO}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{app} \mathrm{dt}, J=$ $3.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.55(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=11.4 \mathrm{~Hz}, \mathrm{OH}), 2.57$ (app
$\mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.3-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.8-1.6(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.13(\mathrm{~s}, \mathrm{SiCH} 3), 0.12\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right) ;$ ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.3,135.1,123.6,83.2,78.5,73.3,71.1$, 43.7, 38.4, 34.0, 28.1, 25.7, 25.4, 18.9, 18.0, 13.4, -4.3, -4.9; IR (film) 3420 (br), 2958, 1730, 1255, 1078, 1050, 1028; MS (CI) m/z 371.2624 (MH, 371.2617 calcd for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si}$).
($\left.2 R^{*}, 3 R^{*}, 5 R^{*}\right)-5-\left[1\left(S^{*}\right)-[[D i m e t h y l(1,1-d i m e t h y l e t h y l)\right.$ silyl $] 0 x y]-3-$ (E)-hexenyl)-2-(4-oxo-2-(E)-butenyl)-3-[(trimethylsilyl)oxy]tetrahydrofuran (15). To a stirring solution of $\mathrm{Me}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(0.044 \mathrm{~mL}, 0.23$ $\mathrm{mmol}), i-\mathrm{Pr}_{3} \mathrm{NEt}(0.040 \mathrm{~mL}, 0.23 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added dropwise over 15 min a solution of $13(18 \mathrm{mg}, 0.046 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL). The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 2 h , diisopropylamine (0.5 mL) was added, stirring was continued for 5 min , and the solvent was removed in vacuo. The residue was triturated with dry hexanes (10 mL), then filtered through a pad of anhydrous CaSO_{4}, and concentrated to give enoxysilane 14 as a clear, colorless oil (23 mg). This material was used without purification in the subsequent oxidation: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.20(\mathrm{~d}, J=12 \mathrm{~Hz}, 0.33 \mathrm{H}$, trans(TMS) $\mathrm{OCH}=$), $6.14(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 0.66 \mathrm{H}$, cis-(TMS)OCH=), 5.5-5.4 (m, $\mathrm{CH}=\mathrm{CH}), 5.03(\mathrm{~m}, 0.3 \mathrm{H}$, trans-(TMS)OCH=CH), 4.51 (app q, $J=6.5 \mathrm{~Hz}, 0.66 \mathrm{H}$, cis-(TMS) $\mathrm{OCH}=\mathrm{CH}$), 4.20 (m, (TMS)$\mathrm{OCH}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 2.25-1.5(\mathrm{~m}, 10$ $\mathrm{H}), 0.96(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}), 0.14(\mathrm{~s}), 0.095(\mathrm{~s})$, 0.085 (s), 0.07 (s), 0.05 (s); IR (film) $1650,1248 \mathrm{~cm}^{-1}$.

A mixture of this sample of $14(23 \mathrm{mg}), \mathrm{Pd}(\mathrm{OAc})_{2}(15 \mathrm{mg}, 0.06$ mmol), and $\mathrm{CH}_{3} \mathrm{CN}\left(1 \mathrm{~mL}\right.$) was stirred at $23^{\circ} \mathrm{C}$ for 1.5 h , then the solvent was evaporated in vacuo, and the residue was diluted with hexane $(10 \mathrm{~mL})$ and filtered through a pad of Celite. Concentration of the filtrate followed by purification of the residue by flash chromatography using hexanes-EtOAc (20:1) as eluant gave the enal 15 ($10.6 \mathrm{mg}, 53 \%$ from 13) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.52$ (d, J $=8.0 \mathrm{~Hz}, \mathrm{HC}=0$), 6.94 (ddd, $J=7.0,7.0,15.6 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CHC}=0$), 6.18 (dddd, $J=1.4,1.4,8.0,15.6 \mathrm{~Hz}, \mathrm{HCC}=0$), 5.49 (ddd, $J=6.1$, $6.1,15.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHEt}), 5.38-5.44(\mathrm{~m}, H \mathrm{C}=\mathrm{CHEt}), 4.30$ (ddd, $J=$ $4.2,4.7,6.8 \mathrm{~Hz}, \mathrm{H}(3)$), 3.82 (apparent dd, $J=5.5,10.7 \mathrm{~Hz}, \mathrm{CHO}$ (TBS)), 3.75 (ddd, $J=4.9,4.9,8.1 \mathrm{~Hz}, \mathrm{H}(5)$), 3.68 (ddd, $J=5.0,7.2$, $8.2 \mathrm{~Hz}, \mathrm{H}(2)$), 2.64 (dddd, $J=1.5,6.8,8.4,15.2 \mathrm{~Hz}, H \mathrm{HCHC=}$ $\mathrm{CHC}=0$), 2.54 (dddd, $J=1.4,5.0,7.4,15.4 \mathrm{~Hz}, \mathrm{H} H \mathrm{CHC}=\mathrm{CHC=O}$), 2.13-2.22 (m, 3 H), 1.98-2.03 (m, 2 H), 1.86 (ddd, $J=4.2,8.5,12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 0.97\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11(\mathrm{~s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right), 0.06\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right)$; IR $\left(\mathrm{CCl}_{4}\right) 2963,2931$, $2894,2856,1700,1469,1456,1256 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.1,156.5,134.6,134.0,124.8,80.8,80.1,73.3,72.6,38.1,36.7,33.4$, 25.9, 25.6, 18.2, 13.7, -0.1, -4.2; MS (CI) $m / z 441$ (MH), 309, 291, 219, 201; MS (EI) $m / z 440.2739$ (440.2778 calcd for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}_{2}$).
(2R*, 3R $\left.{ }^{*}, 5 R^{*}\right)$-2-(5,5-Dichloro-2(E),4-pentadienyl)-5-[1($\left.S^{*}\right)$-[[di-methyl(1,1-dimethylethyl)silyljoxy]-3(E)-hexenyl]-3-[(trimethylsilyl)oxyltetrahydrofuran (16). To a solution of diethyl trichloromethanephosphonate ($70 \mathrm{mg}, 0.28 \mathrm{mmol}$) in THF (0.4 mL) and $\mathrm{Et}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ cooled to $-100^{\circ} \mathrm{C}$ ($\mathrm{N}_{2} /$ methylcyclohexane) was added $n-\mathrm{BuLi}(0.10 \mathrm{~mL}$ of a 2.5 M solution in hexane, 0.25 mmol). After 15 min at $-100^{\circ} \mathrm{C}$, a solution of aldehyde $15(7.0 \mathrm{mg}, 0.016 \mathrm{mmol})$ in THF (0.5 mL) was added, and the temperature of the reaction mixture was allowed to reach $0^{\circ} \mathrm{C}$. The black mixture was then diluted with a saturated solution of $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ followed by addition of $\mathrm{MeOBu}^{\mathrm{t}}(1 \mathrm{~mL})$. The organic extracts were separated, and the aqueous layer was washed with MeOBu ($2 \times 1 \mathrm{~mL}$). The combined organic extracts were washed with brine (1 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Purification of the residue on silica gel ($20: 1$ hexane-EtOAc) gave 7 mg (88%) of 16 : ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.40\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, \mathrm{Cl}_{2} \mathrm{C}=\mathrm{CH}\right.$), 6.25 (dddd, $J=1.3$, $1.3,10.5,15.3 \mathrm{~Hz}, \mathrm{Cl}_{2} \mathrm{C}=\mathrm{CHCH}$), 5.89 (apparent quintet, $J=7.5 \mathrm{~Hz}$, $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{CHCH}=\mathrm{CH}$), 5.49 (ddd, $J=6.0,6.0,15.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHEt}$) 5.38-5.45 (m, $\mathrm{HC}=\mathrm{CEt}$), 4.24 (ddd, $J=3.7,4.4,6.8 \mathrm{~Hz}, \mathrm{H}(3)$), 3.81 (apparent dd, $J=5.4,10.8 \mathrm{~Hz}, \mathrm{CHOSiMe} \mathbf{Z}^{\mathrm{B}}$), $3.61-3.66(\mathrm{~m}, \mathrm{H}(5)$ and H(2)), 2.41-2.47 (m, 1 H), 2.34-2.39 (m, 1 H), 2.11-2.24 (m, 3 H), $1.98-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{ddd}, J=3.7,8.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{t}, J$ $\left.=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(\mathrm{~s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08(\mathrm{~s}$, $\left.\mathrm{SiCH})_{3}\right), 0.07(\mathrm{~s}, \mathrm{SiCH} 3) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.5,134.4$, $129.0,126.1,125.0,119.2,81.9,79.9,73.4,72.5,38.1,37.0,33.3,26.0$, 25.7, 18.2, 13.7, 0.0, -4.2, -4.3; IR (CCl_{4}) 2962, 2931, 2856, 1250, 1106, $1081,969 \mathrm{~cm}^{-1}$; MS (CI) m/z 509 (MH), 507 (MH), 377, 375, 307, 305, 295, 293, 287, 285, 269, 267, 255, 149, 133.
(2R,3R*,5R*)-2-(2(E)-Penten-4-ynyl)-5-[1($\left.S^{*}\right)-[[d i m e t h y l(1,1-d i-$ methylethyl)silyl]oxy] 3(E)-hexenyl] 3[(trimethylsilyl)oxy]tetrahydrofuran (17). To a solution of $n-\mathrm{BuLi}(0.05 \mathrm{~mL}$ of a 2.5 M solution in hexane, 0.13 mmol$), \mathrm{Et}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ and THF $(0.6 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$ was added dropwise a solution of diene 16 ($19 \mathrm{mg}, 0.038 \mathrm{mmol}$) in THF (0.5 mL). The reaction mixture was stirred at $-70^{\circ} \mathrm{C}$ for 10 min , then was warmed to $-20^{\circ} \mathrm{C}$, and after an additional 10 min was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (1 mL). The organic layer was
separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. After drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentration, the residue was purified on silica gel (4:1 hexane-EtOAc) to provide 16 mg (98%) of 17 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.29$ (ddd, $J=7.2,7.2,15.8$ $\mathrm{Hz}, \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CH}$), 5.54 (ddd, $J=1.6,3.5,15.9 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CCH}$), 5.39-5.51 (m, HC=CHEt) 4.24 (ddd, $J=3.7,4.7,6.9 \mathrm{~Hz}, \mathrm{H}(3)$), 3.80 (apparent dd, $J=5.5,10.9 \mathrm{~Hz}, \mathrm{CHOSiMe} \mathrm{Bu}^{\mathrm{t}}$), $3.59-3.66(\mathrm{~m}, \mathrm{H}(2)$ and $\mathrm{H}(5)), 2.80(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, H \mathrm{C} \equiv \mathrm{C}), 2.33-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.21$ (m, 2 H), 2.13 (ddd, $J=6.9,6.9,13.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.99-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.81$ (ddd, $J=3.7,8.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}$), $0.97\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.80$ $\left(\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(\mathrm{~s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right), 0.06\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,134.5,125.0,110.1,82.5,81.6,79.8$, 75.8, 73.5, 72.4, 38.1, 37.1, 33.4, 26.0, 25.7, 18.2, 13.7, 0.0, -4.22, -4.24; IR (CCl_{4}) $3316,2959,2930,2899,2858,2105,1472,1462,1252,1110$, $1040 \mathrm{~cm}^{-1}$; MS (CI) m/z 437 (MH), 367.2132 (367.2125 calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}_{2}$, loss of $\mathrm{C}_{5} \mathrm{H}_{9}$), 305, 239, 133.
($\left.2 R^{*}, 3 R^{*}, 5 R^{*}\right)$-3-Acetoxy-5-[1($\left.S^{*}\right)$-[[dimethyl(1,1-dimethylethyl)-silyljoxy)-3(E)-hexenyl-2-(2-(E)-penten-4-ynyl)tetrahydrofuran (18), To a stirred solution of 17 ($78 \mathrm{mg}, 0.179 \mathrm{mmol}$) in anhydrous MeOH (10 mL) was added anhydrous citric acid ($166 \mathrm{mg}, 0.86 \mathrm{mmol}$). The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 15 min , and then the solvent was removed in vacuo. The residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, the organic layer was separated, and the aqueous layer was extracted with ether ($2 \times 15 \mathrm{~mL}$). The combined organic phases were washed with saturated NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}$) and brine ($1 \times 5 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to afford 18 ($61.4 \mathrm{mg}, 94 \%$) as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.30 (ddd, $J=7.5,7.5,15.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{CCH}=\mathrm{CH}$), 5.58 (ddd, $J=1.6$, $3.7,15.9 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CCH} \equiv$), $5.46-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.09$ (ddd, $J=2.3,3.1,10.1 \mathrm{~Hz}, \mathrm{CHOSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}$), 3.95 (app ddd, $J=2.3,5.1$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (ddd, $J=2.1,4.9,9.4 \mathrm{~Hz}, \mathrm{H}_{5}$), 3.58 (ddd, $J=2.3$, $6.9,6.9 \mathrm{~Hz}, \mathrm{H}(2)), 3.43(\mathrm{~d}, J=11.2 \mathrm{~Hz}, \mathrm{OH}), 2.80(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $\mathrm{C} \equiv \mathrm{CH}$), 2.47-2.50 (m, 2 H), 2.22-2.27 (m, 1 H), 2.2-2.17 (m, 1 H$)$, 1.96-2.07(m, 4 H$), 0.97\left(\mathrm{t}, \mathrm{J}=7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08$ ($\left.\mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;$ IR $\left(\mathrm{CCl}_{4}\right) 3456,3316,2962,2931,2856,2106,1462,1256$ cm^{-1}; MS (CI) m/z 365.2504 (MH, 365.2512 calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}$), 233, 151, 133.

A solution of this alcohol ($10.0 \mathrm{mg}, 0.0274 \mathrm{mmol}$), acetic anhydride $(0.2 \mathrm{~mL})$, pyridine $(0.3 \mathrm{~mL})$, and 4 -(dimethylamino)pyridine (one crystal) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred at $23^{\circ} \mathrm{C}$ for 1 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, washed successively with saturated CuSO_{4} solution ($1 \times 2 \mathrm{~mL}$), saturated NaHCO_{3} solution ($1 \times 2 \mathrm{~mL}$), and brine ($1 \times 2 \mathrm{~mL}$), then dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Purification of the residue by flash chromatography ($20: 1$ hexanes-EtOAc) gave 18 ($9.5 \mathrm{mg}, 85 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta 6.25$ (ddd, $J=7.2,7.2,16.0 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CH}$), 5.54 (ddd $J=1.5,3.6,16.0 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CCH}), 5.46-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.41(\mathrm{~m}, 1$ H), 5.23 (ddd, $J=2.7,4.5,7.3 \mathrm{~Hz}, \mathrm{H}(3)$), 3.88 (ddd, $J=4.0,6.0,6.0$ $\mathrm{Hz}, \mathrm{CHOSiMe} \mathrm{Bu}^{\mathrm{t}}$), $3.68-3.73(\mathrm{~m}, \mathrm{H}(2)$ and $\mathrm{H}(5)), 2.82(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, \mathrm{C} \equiv \mathrm{CH}$), 2.44-2.48(m,1 H), 2.35-2.40(m,1 H), 2.27 (apparent quintet, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.06\left(\mathrm{~s}, \mathrm{OCOCH}_{3}\right)$, 1.89-2.04 (m, 3 H), $0.97\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.08\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right), 0.07\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right)$; IR (CCl ${ }_{4}$) 3312, 2962, 2931, 2893 , 2856, 1744, $1237 \mathrm{~cm}^{-1}$; MS (CI) m/z 407.2625 (MH, 407.2617 calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si}$), 275, $255,215,133$.
($\left.2 R^{*}, 3 R^{*}, 5 R^{*}\right)$-3-Acetoxy-5-(1($\left.S^{*}\right)$-hydroxy-3(E)-hexenyl)-2-(2(E)-penten-4-ynyl)tetrahydrofuran (19). A solution of silyl ether 18 (43 $\mathrm{mg}, 0.106 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ containing HF-pyridine (Aldrich, ca. five drops) was maintained at $23^{\circ} \mathrm{C}$ for 1 h . The reaction solution was then diluted with ether (30 mL), washed carefully with saturated NaHCO_{3} solution ($2 \times 2 \mathrm{~mL}$) and brine ($1 \times 2 \mathrm{~mL}$), dried (MgSO_{4}), and concentrated. Purification of the residue by flash chromatography ($9: 1$ and then $1: 1$ hexanes-EtOAc) gave 19 ($31 \mathrm{mg}, 100 \%$) as a viscous, colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.23$ (ddd, J $=7.3,7.3,15.9 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CCH}=\mathrm{CH}), 5.56-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.37-5.55(\mathrm{~m}$ 1 H), 5.24 (ddd, $J=2.3,4.0,6.5 \mathrm{~Hz}, \mathrm{H}(3)), 3.86$ (ddd, $J=3.7,6.6,8.1$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.81-3.83$ (m, CHCOH), 3.79 (ddd, $J=3.9,5.7,7.6 \mathrm{~Hz}, 1$ $\mathrm{H}), 2.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CH}), 2.39-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.30$ (ddd, $J=$ $6.7,8.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.09(\mathrm{~m}, 4 \mathrm{H}), 2.08$ ($\mathrm{s}, \mathrm{OCOCH}_{3}$), $0.98\left(\mathrm{t}, \mathrm{J}=7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, addition of $\mathrm{D}_{2} \mathrm{O}$ results in collapse of the multiplet at $\delta 3.81-3.83$ to a ddd ($J=3.8,6.1,7.1 \mathrm{~Hz}$) and loss of 1 H in the multiplet at $\delta 1.98-2.09 ;{ }^{13} \mathrm{NMR}(125 \mathrm{MHz}$ CDCl_{3}) $\delta 170.33,141.62,135.72,123.96,111.01,81.87,80.05,79.96$ $76.63,74.36,71.02,36.26,32.66,32.63,25.54,20.97,13.64$; IR $\left(\mathrm{CCl}_{4}\right)$ $3583,3314,2968,2939,2847,1743,1439,1374,1240 \mathrm{~cm}^{-1}$; MS (CI) $m / z 293$, (MH), 233, 227, 215, 133; MS (EI) $m / z 292.1690$ (292.1674 caled for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}, \mathrm{M}$).
(\pm)-trans-Kumausyne (1). To a solution of 19 ($13.5 \mathrm{mg}, 0.046 \mathrm{mmol}$) in benzene (2 mL) were added, 2,6-di-tert-butylpyridine $(0.026 \mathrm{~mL}, 0.11$ mmol), $\mathrm{Ph}_{3} \mathrm{P}$ ($32 \mathrm{mg}, 0.11 \mathrm{mmol}$), and freshly sublimed CBr_{4} (41 mg ,
0.11 mmol). The reaction mixture was warmed to $40^{\circ} \mathrm{C}$, and then a second batch of $\mathrm{Ph}_{3} \mathrm{P}(32 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(41 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added. The solution was stirred for 30 min at $40^{\circ} \mathrm{C}$, allowed to cool to $23^{\circ} \mathrm{C}$, and then filtered through a plug of silica gel ($1: 1$ hexanes$\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The filtrate was concentrated and purified by flash chromatography ($4: 1$ hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give $1(6.6 \mathrm{mg}, 40 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.24$ (ddd, $J=7.4,7.4,15.8 \mathrm{~Hz}$, $\mathrm{C} \equiv \mathrm{CCH}=\mathrm{C} H) 5.54-5.64(\mathrm{~m}, 2 \mathrm{H}), 5.27-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.25$ (ddd, J $=2.7,4.2,6.9 \mathrm{~Hz}, \mathrm{H}(3)), 3.99-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{ddd}, J=4.4,6.1$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CH}), 2.67-2.72(\mathrm{~m}, 2 \mathrm{H})$, 2.41-2.56 (m, 3 H), 2.01-2.10 (m, 2 H), 2.09 (s, $\mathrm{CH}_{3} \mathrm{CO}$), 1.91 (ddd, $J=2.6,7.1,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.00\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.44,141.62,135.88,124.75,111.05,82.01$, $80.20,79.48,76.59,74.12,56.59,37.46,36.48,32.79,25.57,20.99,13.63$; IR (film) 3292, 2926, 1740, 1375, $1240 \mathrm{~cm}^{-1}$; MS (CI) $m / z 355.0912$ (355.0830 calcd for $\mathrm{C}_{17} \mathrm{H}_{24}{ }^{79} \mathrm{BrO}_{3}, \mathrm{MH}$), 357.0900 (357.0830 caled for $\left.\mathrm{C}_{17} \mathrm{H}_{24}{ }^{81} \mathrm{BrO}_{3}, \mathrm{MH}\right)$.
(2S)-2-Hydroxy-2-vinylcyclopentanone ((S)-22). To a stirring solution of ketoenamine $21(500 \mathrm{mg}, 2.56 \mathrm{mmol})^{27}$ and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ was added dropwise over 30 min a solution of vinylmagnesium bromide (1.0 M in THF, $6.4 \mathrm{~mL}, 6.4 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL). The organic layer was separated, and the aqueous layer was extracted with ether ($3 \times 30 \mathrm{~mL}$). The combined organic phases were washed with brine ($1 \times 30 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Purification of the residue by flash chromatography using hexanes $-\mathrm{Et}_{2} \mathrm{O}$ (1:1) as eluant gave ($2 S$)-22 (210 mg , 65%) as a pale yellow oil: $[\alpha]^{25}$ D 32.7° (c 1.4, CHCl_{3}).
(1S,2R)-1-Vinylcyclopentane-1,2-diol ((1S),(2R)-3). Reduction of ($2 S$)-22 ($210 \mathrm{mg}, 1.67 \mathrm{mmol}$) under the conditions described previously for the reduction of the related racemic ketone ${ }^{8}$ gave ($1 S, 2 R$)-3 (174 mg , 81%) as a viscous, colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}-58.4^{\circ}\left(c 1.25, \mathrm{CHCl}_{3}\right)$.

A solution of this diol sample ($10 \mathrm{mg}, 0.078 \mathrm{mmol}$), $(R)-(-)-\alpha-$ methoxyphenylacetic acid ($13.8 \mathrm{mg}, 0.0819 \mathrm{mmol}$), dicyclohexylcarbodiimide ($17 \mathrm{mg}, 0.082 \mathrm{mmol}$), 4-pyrrolidinopyridine ($1.1 \mathrm{mg}, 0.078$ mmol), and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was maintained at $23^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h} .^{31}$ Concentration followed by purification of the residue by flash chromatography ($3: 1$ hexanes- $\mathrm{Et}_{2} \mathrm{O}$) gave the monoester 23 ($18 \mathrm{mg}, 86 \%$) as a colorless oil. The enantiomeric excess of 3 was determined to be 84% by ${ }^{1} \mathrm{H}$ NMR integration of the vinylic hydrogen signals of the major and minor distereoisomers at $\delta 5.4$ and 5.9 , respectively.
(2R,3aR,7aR)-Hexahydro-2-[(benzyloxy)methyl]-4(2H)-benzofuranone ($(-)-5)$. Reaction of a sample of ($1 S, 2 R$)-3 ($55 \mathrm{mg}, 0.41 \mathrm{mmol}$) with α-(benzyloxy)acetaldehyde, under conditions identical with those
described ${ }^{8}$ for the racemic diol, provided (-)-5 ($64 \mathrm{mg}, 57 \%$) as a col orless oil: $[\alpha]^{26} \mathrm{D}-8.9^{\circ}$ (c, 1.28, CHCl_{3}).

Conversion of (-)-5 to (R)-Methylmandelate Ester 25. A mixture of $(-)-5(64 \mathrm{mg}, 0.25 \mathrm{mmol}), 10 \% \mathrm{Pd} / \mathrm{C}(8 \mathrm{mg})$, and EtOAc (1.5 mL) was stirred at $23^{\circ} \mathrm{C}$ under an atmosphere of H_{2} for 18 h . The reaction mixture was then filtered through a pad of Celite, and the filtrate was concentrated. Purification of the residue by flash chromatography (EtOAc) gave alcohol 24 ($39 \mathrm{mg}, 93 \%$) as a viscous, colorless oil: $[\alpha]^{26}$ $-38.4^{\circ}\left(c 1.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.32(\mathrm{~m}, 1 \mathrm{H})$, $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}$ $1 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.73(\mathrm{~m}, 5 \mathrm{H})$; IR (film) 3423 (br, OH), 1706, $1048 \mathrm{~cm}^{-1}$, MS (EI, 70 eV) m/z 170.0941 (170.0943 calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}, \mathrm{M}$).

A solution of alcohol 24 ($19 \mathrm{mg}, 0.188 \mathrm{mmol}$), (R)-(-)- α-methoxyphenylacetic acid ($19.5 \mathrm{mg}, 0.118 \mathrm{mmol}$), DCC ($24 \mathrm{mg}, 0.12 \mathrm{mmol}$), and 4-pyrrolidinopyridine ($2.0 \mathrm{mg}, 0.012 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was maintained at $23^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h} .^{31}$ Evaporation of the solvent followed by purification of the residue by flash chromatography ($1: 1$ hexanes-Et OAc) gave 25 ($34 \mathrm{mg}, 92 \%$) as a colorless oil. The enantiomeric excess of 24 was determined to be 84% by ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) comparison of the integrals for the methoxy signlets at $\delta 3.39$ and 3.42 and the methine singlets at $\delta 4.80$ and 4.82 of the major and minor diaste reomers of 25 , respectively.

Acknowledgment. We acknowledge the contribution of K. D. Hutchinson in carrying out the chemical correlation that initially established the stereostructure of 11 and S . Joseph for his initial work in optimizing the reaction of 21 with vinylmagnesium bromide. We also thank Professor Etsuro Kurosawa for providing comparison IR and ${ }^{1} \mathrm{H}$ NMR spectra of natural trans-kumausyne. Our investigations in this area were supported by NIH Grant NS-12389. NMR and mass spectra were determined at the University of California at Irvine with spectrometers purchased with the assistance of NSF Shared Instrumentation Grants.

Registry No. 1, 126786-44-5; 3, 133870-03-8; (1S,2R)-3, 133908-24-4; 5, 133870-04-9; (-)-5, 133908-25-5; 6, 133870-05-0; 7, 133870-06-1; 8, 133870-07-2; 9, 133870-08-3; 10, 133870-09-4; 11, 133870-10-7; 12, 133870-11-8; 13, 133870-12-9; cis-14, 133870-13-0; trans-14, 133908. $26-6 ; 15,133870-14-1 ; 16,133886-79-0 ; 17,133870-15-2 ; 18,133870-$ 16-3; 19, 133870-17-4; 20, 133870-18-5; 21, 96304-33-5; (2S)-22 133870-19-6; 23, 133870-20-9; 24, 133870-21-0; 25, 133870-22-1; 1,2 cyclopentanedione, 3008-40-0; (S)-O-methylprolinol, 63126-47-6.

Bis-Heteroannulation. 15. Enantiospecific Syntheses of (+)and (-)-Norsecurinine

Peter A. Jacobi,* Charles A. Blum, Robert W. DeSimone, and Uko E. S. Udodong Contribution from the Hall-Atwater Laboratories, Wesleyan University, Middletown, Connecticut 06457. Received December 27, 1990

Abstract

Norsecurinine (2a) has been prepared in a stereospecific fashion with the acetylenic oxazole 39 as the starting material. Diels-Alder cyclization of 39 afforded the furano ketone 45 that was transformed in five steps to the butenolide mesylate 52. Transannular alkylation of $\mathbf{5 2}$ then afforded 2a. In identical fashion, ent-39 gave (+)-norsecurinine ($\mathbf{2 b}$).

Introduction

The Securinega alkaloids are a family of more than 20 compounds isolated from the Securinega and Phyllanthus genera of Euphorbiaceae, ${ }^{1}$ most of which contain either a "securinine-type" skeleton I or a "norsecurinine-type" skeleton II (Figure 1). Members of skeletal class I are built upon an indolizidine nucleus, while those of class II are built upon a pyrrolizidine nucleus. All of these compounds contain an α, β-unsaturated- γ-lactone (butenolide) moiety, and they also share in common the interesting

[^5]azabicyclo[3.2.1]octane ring system.
Securinine (1) is the most abundant of the Securinega alkaloids and it was the first member of this group to be isolated (1956) and characterized (1962). ${ }^{2 a-c}$ The degradative and spectroscopic
(2) (a) Murav'eva, V. I.; Ban'kovskii, A. I. Dokl. Akad. Nauk. SSSR 1956, ll 0,998 ; Chem. Abstr. 1957, 51,8121 a. (b) Satoda, I.; Murayama, M.; Tsuji, Y.; Yoshii, E. Tetrahedron Lett. 1962, 3, 1199. (c) Horii, Z.; Tanaka, T.: Tamura, Y.; Saito, S.: Matsumura, C.; Sugimoto, N. J. Pharm Soc. Jpn. 1963, 83, 602; Chem. Abstr. 1963, 59, 9087c. (d) Horii, Z.; Hanaoka, M.; Yamawaki, Y.; Tamura, Y.; Saito, S.; Shigematsu, N.; Kodera, K.; Yoshikawa, H.; Sato, Y.; Nakai, H.; Sugimoto, N.; Tetrahedron, 1967 23, 1165 and references cited therein.

[^0]: (1) For reviews, see: Faulkner, D. J. Nat. Prod. Rep. 1984, $l, 251 ;$ 1986, 3, 1.
 (2) (a) Moore, R. E. In Marine Natural Products; Scheuer, P. J., Ed.; Academic: New York, 1978; Vol. 1, pp 43-121. (b) Erickson, F. L. In Marine Natural Products; Scheuer, P. J., Ed.; Academic: New York, 1983; Vol. 5, pp 131-257.
 (3) cis- and trans-kumausyne: Suzuki, T.; Koizumi, K.; Suzuki, H.; Kurosawa, E. Chem. Lett. 1983, 1643.
 (4) Kumausallene: Suzuki, T.; Koizumi, K.; Suzuki, M.; Kurosawa, E. Chem. Lett. 1983, 1639.
 (5) Laurefucin: Furusaki, A.; Kurosawa, E.; Fukuzawa, A.; Irie, T. Tetrahedron Lett. 1973, 4579.
 (6) Isoprelaurefucin: Suzuki, M.; Kurata, K.; Suzuki, T.; Kurosawa, E. Bull. Chem. Soc. Jpn. 1986, 59, 2953.
 (7) Tricyclic tris(tetrahydrofuran) from Laurencia obtusa: Gonzalez, A. G.; Martin, J. D.; Norte, M.; Rivera, P.; Ruano, J. Z. Tetrahedron 1984, 40, 3443.

[^1]: (8) Brown, M. J.; Harrison, T.; Herrinton, P. M.; Hopkins, M. H.; Hutchinson, K. D.; Overman, L. E.; Mishra, P. J. Am. Chem. Soc., preceding paper in this issue.
 (9) Hopkins, M. H.; Overman, L. E.; Rishton, G. M. J. Am. Chem. Soc., first of the series of three in this issue.
 (10) An early version of this total synthesis has been described in preliminry form, see: Overman, L. E. In Selectivities in Lewis Acid-Promoted Reactions; NATO ASI Series; Schenzer, D., Ed.; Kluwer Academic: Dordrecht, The Netherlands, 1989; Vol. 289, p 1.
 (11) For synthetic approaches to this natural products family, see: Tonn, C. E.; Palazón, J. M.; Ruiz-Pérez, C.; Rodriguez, M. L.; Martín, V. S. Tetrahedron Lett. 1988, 29, 3149.

[^2]: (12) The migratory aptitude of sec-alkyl in Baeyer-Villiger oxidations is typically significantly greater than prim-alkyl. ${ }^{13}$
 (13) See, e.g.: Krow, G. R. Tetrahedron 1981, 37, 2697 and references cited therein.
 (14) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480.
 (15) See, e.g. Paquette, L. A.; Oplinger, J. A. J. Org. Chem. 1988, 53, 2953. Williams, D. R.; Harigaya, Y.; Moore, D. L.; D'sa, J. J. Am. Chem. Soc. 1984, 106, 2641.
 (16) Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 1295.
 (17) Kow, R.; Rathke, M. W. J. Am. Chem. Soc. 1973, 95, 2715.
 (18) Rajagopalan, S.; Zweifel, G. Synthesis 1984, 113.

[^3]: (19) For closely related examples; see: Danishefsky, S. J.; DeNinno, M. P.; Phillips, G. B.; Zelle, R. E.; Lartey, P. A. Tetrahedron 1986, 42, 2809. Danishefsky, S. J.; Selnick, H. G.; Zelle, R. E.; DeNinno, M. P. J. Am. Chem. Soc. 1988, $110,4368$.
 (20) Hutchinson, K. D. Ph.D. Dissertation, University of California, Irvine, 1991.
 (21) Corey, E. J.; Cho, H.; Reucker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455.
 (22) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011.

[^4]: (23) Villieras, J.; Perriot, P.; Normant, J. F. Synthesis 1975, 458.
 (24) Castro, B. R. Org. React. 1983, 29, 1.
 (25) Provided by Professor E. Kurosawa, Department of Chemistry, Hokkaido University, Sapporo, Japan.
 (26) The synthesis of 1 from hydrobenzofuranone 5 (Schemes II and III) contains no obvious stages where the enantiomeric integrity of an intermediate would be in jeopardy.
 (27) Fujisawa, T.; Watanabe, M.; Sato, T. Chem. Lett. 1984, 2055.
 (28) Wrobel, J.; Cook, J. M. Synth. Commun. 1980, 10, 333.
 (29) Enders, D.; Fey, P.; Kipphardt, H. Org. Synth. 1987, 65, 173.

[^5]: (1) Snieckus, V. In The Alkalolds; Manske, R. H., Ed.; Academic Press: New York, 1973; Vol. 14, p 425

